1) Teorema de Bolzano

Soluciones paso a paso - Teoremas

Funcién: f(z) = z° — 4z? + 1. Intervalo: [0, 2].
a) Hipétesis de Bolzano 1. Es un polinomio = es continua en todo R, en particular en [0, 2].
b) ;Hay al menos una raiz? 1. Calculamos los valores en los extremos: - f(0) =03 —4-02+1=1-

f(2)=23-4-224+1=8—-16+1= —T72. Observa que f(0) > 0y f(2) < 0: cambia de signo.
3. Por Bolzano, existe al menos una raiz ¢ € (0, 2) tal que f(c) = 0.

2) Teorema de Bolzano

Funcién: f(z) =In(z + 1) — g Intervalo: [0, 2].

x
a) Hipétesis de Bolzano 1. In(x + 1) es continua para = > —1. En [0,2] estd definida. 2. 5 s

continua. 3. Resta de continuas = f es continua en [0, 2].

b) ;Hay al menos una raiz? 1. Calculamos: - f(0) =In(1) — 0 =0 2. Si en un extremo ya vale 0,
entonces ya tenemos una raiz.

(7 conclusion: si, existe al menos una raiz en [0,2]:z = 0.

3) Teorema de Rolle

Funcién: f(z) = z* — 62% + 9z + 2. Intervalo: [1, 3].

Paso 1: Continuidad y derivabilidad - Es un polinomio =- continua y derivable en todo R.

Paso 2: Comprobarsi f(1) = f(3)-f(1) =1-64+9+2=6-f(3) =27—-54+27+2=2
Como 6 / 2,0 se cumple la condicion f(1) = f(3).

XConcIusién: NO se puede aplicar Rolle en [1, 3]. (No hay que buscar ¢).

4) Teorema de Rolle
Funcién: f(z) = v/= + 1 — . Intervalo: [0, 3].

Paso 1: Continuidad y derivabilidad - +/x + 1 es continua para > —1 y derivable paraz > —1.-En
[0, 3] no hay problema. f es continua y derivable.



Paso 2: Comprobarsi f(0) = f(3)- f(0)=v1-0=1-f3)=v4-3=2-3= -1
Como1l / —% NO se cumple f(0) = f(3).

> Conclusién: NO se puede aplicar Rolle en [0, 3).

5) Teorema del Valor Medio (TVM)

Funcién: f(z) = 2% — 3z + 1. Intervalo: [1, 4].
a) Hipétesis del TVM - Polinomio = continua en [1, 4] y derivable en (1, 4).

b) Hallar ¢ 1. Pendiente de la recta secante:

F4) - f(1)
4-1
2. Calculamos: - f(4) =16 —12+1=5-f(1) =1-3+1=—1
=y _5_,
3. Derivada:
fl(z) =2z -3

4.Igualamos a 2:

2x—3:2j2m:5:>m:g

5
_]Conclusi(')n: c= 2

6) Teorema del Valor Medio (TVM)
Funcién: f(z) = In(z + 2). Intervalo: [0, 2].

a) Hipétesis del TVM - In(x + 2) esta definida para z > —2 = en [0, 2] esta perfecta. - Es continua en
[0, 2] y derivable en (0, 2).

b) Hallar ¢ 1. Pendiente secante:

2. Simplificamos:



Entonces:

2 2

3. Derivada:
1

M) —

4. Igualamos:
1 In(2) 2 2
= = 2= ——=>c=—=—2
cr2- 2 T L T T )

2
_]Conclusién: c=———2(yestaentre0y?2).
In(2)
7) Aplicaciéon de Bolzano
Funcién: f(z) = z° — 5z + 1. Intervalo: [0, 1].
1. Es un polinomio = continua en [0, 1].
2. Valores en extremos:
3. £(0) = 1 (positivo)

4.f(1) =1 -5+ 1 = —3 (negativo)
5. Cambia de signo = por Bolzano existe ¢ € (0,1) con f(c) = 0.

_]Conclusién: la ecuacién tiene al menos una solucién en [0, 1].

8) Aplicacion de Rolle

Funcién: f(z) = z* — 42? + 3. Intervalo: [-1, 1].

Paso 1: Hipétesis - Polinomio = continua en [—1, 1] y derivable en (—1,1).

Paso 2: Comprobar f(—1) = f(1)-f(-1)=1-4+3=0-f(1)=1-4+3=0
Se cumple f(—1) = f(1) = si aplica Rolle.

Paso 3: Hallar c con f’(c) = 0 1. Derivada:

f'(z) = 42® — 82 = 4z (z* — 2)
2.Igualamos a 0:
4r(z® —2)=0=>z=002"=2= 2= +?2

3.En (—1,1) solo entra z = 0 (porque £+/2 ~ +1,414 estan fuera).



_]Conclusién: c=0.

9) Aplicacion del Teorema del Valor Medio
Funcién: f(z) = v/ + 4. Intervalo: [0, 5].

a) Hipétesis - v/x + 4 est4 definida para > —4 = en [0, 5] esta bien. - Es continua en [0,5] y
derivable en (0, 5).

b) Hallar ¢ 1. Pendiente secante:

5—-0 5 5 5
2. Derivada:
1
fl(z) = ENZEw
3. Igualamos:
1 1 5
2\/H__4:g:>2\/c+—4:5:>\/?=§

4. Elevamos al cuadrado:

9
Conclusién:c = —.
4 1
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