SOLUCION - INTEGRALES DEFINIDAS

A. Regla de Barrow

1. Calcula [ (32% — 4z + 1)dx

Solucién:
Buscamos una primitiva de la funcién f(z) = 322 — 42 + 1:
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Aplicamos la Regla de Barrow en el intervalo [—1, 2]

/21(3x2 — 4z +1)dz = F(2) — F(—1)

= [@° =22 +2] - [(-1)° = 2(-1)* + (-1)]
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2. Calcula [j(2sinz — cosx)dx
Solucién:
La primitiva es:
F(xz) = —2cosz —sinz



Aplicamos Barrow:

/;(2 sinx — cos z)dx = [—2cos(m) — sin(m)] — [-2cos(0) — sin(0)]

—2-(-2)=4
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B. Calculo de areas

3. Area limitada por y = 2%, eje z, =0y z = 1

Solucién:
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4. Area entre y = 22 — 4z + 3 y el eje z

Solucién: Puntos de corte con el eje X: 22 — 4z +3 = 0= (v — 1)(x — 3) = 0. Raices: z = 1,7 = 3. En
(1,3) la funcién es negativa, tomamos valor absoluto:
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A= / (2® — 4z + 3)dx
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F(3)=9—18+9=0. F(1)=1/3—2+3=4/3.
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5. Area limitada por y = z e y = 22
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Solucién: Cortes: 2> =z = z(z —1)=0= 2 =0,z = 1. En (0,1), x > 2%
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6. Areaentre y=¢*, y=1,2=0yz =1
Solucion: Como e¢* > 1 para x > 0:
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7. Area limitada por y = 2° — z y el eje =

Solucién: Raices: z(22 —1) = 0 = x = 0, —1, 1. Simetria impar. Area total = 2x Area en [0, 1] (en valor

absoluto).
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8. Areaentre y=122>—2zey=—12+2z
Solucién: Interseccién: 72 — 2z = —x? 4+ 22 = 222 —4r =0 = 2 = 0,2 = 2. En (0, 2), pardbola invertida
arriba.

A= /02[(—952 +20) — (2 — 2)de = /02(—2952 + 4a)dz
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C. Determinacion de un limite de integracion

9. Determina a > 0 tal que el area bajo y = x hasta © = a sea 8

Solucién:

a 2 2
/ zds = 8 = [m] 8= 8 a2=16
0 2 2

Como a > 0, entonces a = 4.



10. Determina a > 0 tal que [;(32® + 1)dz = 10
Solucién: "
[m3+x}0:10;sa3+a—10:0

Por Ruffini probamos divisores de 10. Para a = 2: 8 + 2 — 10 = 0. Solucién: a = 2.

D. Calculo de la constante de integracién

11. F(z) = [;(2t — 3)dt + ¢, halla ¢ si F(0) =5
Solucion: Evaluamos en z = 0:
0
F(0) :/ (2t —3)dt +ec=0+c=c
0

Dado que F'(0) = 5, entonces ¢ = 5.

12. F(x) = [F(t* + 1)dt + ¢, halla ¢ si F(0) = —4/3

Solucion: 0 .
F(0) :/ (t> 4+ 1)dt + ¢ = —/ (t> 4+ 1)dt + ¢
1 0

C il + (1+1)+ 24
3 0 3 3
Igualamos a —4/3:
4+ 4 = 0
_— C = —— C =
3 3



